Machine Learning I
Practice Session [

1 Goals

The goal of this assignment is: (a) to learn how to use the Principal Component Analysis (PCA)
technique presented during the class and (b) to get you acquainted with cases in which PCA
can perform well and cases when it does not.

The document is divided into three parts:

e Part 1 — Getting started: Instructions on how to download and run MIDemos.

e Part 2 — How-to: Instructions on how to perform the objectives of the first practicals:
importing a dataset, visualizing data, performing PCA

e Part 3 — Tasks and Questions: Set of tasks to be performed during the practical and
questions you must answer.

For this first practical you will focus on loading various real-life datasets, visualizing the
data distribution and then selecting good projections of the data through Principal Component
Analysis. A good projection is such that it improves the separability of the data or reduces
the dimensionality of the dataset, or do both. Throughout the practical session, you will be
working on the following real data:

1. Wine cultivar

2. Autonomous driving

3. Fault detection of metal plates
4. Faces

You can download and find a description of the datasets on the moodle website for the class
here.
1.1 Getting started
1.1.1 Using Virtual Machines

1. Login at the terminal with your GASPAR account
If you are not already in a virtual machine:

(a) Open the VMware horizon client and login with the GASPAR account
(b) Select the STT Windows 10 Virtual Machine

2. Download and extract MLdemos under the Documents folder.

3. Launch mldemos.exe


https://moodle.epfl.ch/mod/folder/view.php?id=1034256

1.1.2 Installation on other Windows machines

If you are not using the STI-Windows 10 virtual machine,you can download ML demos to your
Windows machine, download MLDemos. All you need to do is to:

1. Get the software (downloadable on Moodle or at http://lasa.epfl.ch/teaching/lectures/
ML_Msc/MLDemos-Windows-Latest .zip)

2. Unzip it in the folder of your choicd]
3. Run the executable mldemos.ezxe

The software will provide a graphical interface for visualizing the data and algorithms you
will use throughout this year.

Important: The only maintained and updated version of MLDemos is the Windows version.
If your personal computer is a mac or linux, you have to use the virtual machine which can
accessed remotely with any OS at http://vdi.epfl.ch).

2 How-to:

Numerical datasets

2.1 Import numerical dataset

The numerical datasets used for the practicals are csv files where each row represents a sample,
each column an attribute and the last column is the class in which the sample belongs to. Also
only the first row of the csv contains a short id tag for each attribute. Feel free to open the csv
files with applications like Excel in order to familiarize yourself with the layout.

Follow these steps to import the datasets.

1. Launch MLDemos and select File >Import > Data from the menu and open the csv file you
want to load. In this example we will use the wines’ dataset.

2. The data loading interface will pop up (see Figure . At this dialogue box select the: “First
row as Header” option and then click on the : “Send data” button. Now you should be able
to see how the data are distributed at the first two dimensions where the different colors
represent the classes (see Figure [2)).

2.2 Visualize data

Real life datasets usually consist of many dimensions. Thus a 2D visualization may not be
enough to determine if the dataset is easily classifiable and which dimensions are the most
important. Thus, we can use different visualizations to interpret high-dimensional data. To
achieve that change from 2D view to visualizations at the drop-down menu below the grid (see
red box in Fig.

We will focus on two types of visualizations:

e Individual plots which illustrate how the classes are distributed on each dimension using
box-plots.

e Scatter plots which illustrate how the samples are distributed on 2D.


http://lasa.epfl.ch/teaching/lectures/ML_Msc/MLDemos-Windows-Latest.zip
http://lasa.epfl.ch/teaching/lectures/ML_Msc/MLDemos-Windows-Latest.zip
http://vdi.epfl.ch

: Load Formatted Data

| - I Dataset |
Load Dataset File IAlohol | 2Melicecid | SAsh | AwAlceintyofash | S5 [ =]
Separators | Any | {1 |151434076720215 056066822051 0231399789957+ -1.16630317363- 1.90852150727848 €
2 |0245596827817- -0.A980EB55572- -0.82566721507-- -2483840524B4- 0018093979665 £
Class Column: |14 =
3 |0.196325218517- 0921171523078 1.10621386304864 026798225235~ 0.A8B109814021- €
[ Ignore Class (set to 0) —
Import limits 4 |168579139984216 -D34583508408-+ 0486553804505+ -0.B0697480512- 0928299826293 ¢
|1009& | 5 |0.29486843711703 0227053279723+ 1.83522550064086 0450674484664~ 1278378998074 €
| Send Data I
| | 6 |147738706031714 -8.51591131709- 0304300962697~ -1.28687929647- B.ASB283991937- 1
7 |1.71142720449216 -0.41744612956-- 0304300962697 -146574348073- -0.26196935775- €
8 |130493642776713 -0.16680747039- 0887510344770~ -0.56742255045-- 148B42650114216 €
9 |225341490679222 -062332788530- -0.71631545503 164540766498 -0.19195352348 €
10 |1.8585783812671  -9.88291792516-- -0.3518095921358 104652705080 -0.12193768904-- |1
11 |1.35420803706713 -0.15785608971 - -0.24245783299 -DA4764643661- 0368173151445+ |1
12 |1.37884384171713 -0.76654997626-- -0.16955666023-- -D.BO607480512-+ -033198519211 - -
13 |0.92308145569209 -0.542765450914- 0158498617178 -1.04652705080- -0.75208019825-- €
14 |215487168819221 -0.54276545014- 0085597444419 -242305246343 - -0.61204852953- |1
15 |169910930216716 -0.41744612956-- 0040146858030 -2.24428827917- 0.158125648377- |1
16 |0.775266627792-- -0AT115441367-- 1.21556562218747 -D.68719868228- 0858283991937~ €
17 1 RAASAAORTIEATIE  _ATTIARAPT614.0. 1 TARARRTOAQARRG Q18124177671 e IAIQAIHSJJ-TQSIIJLI
Close | 4 L4
Ctrl + Click to select multiple columns. Selected columns will be excluded from the input

Figure 1: Data loading interface. Select the : “First row as Header” option and click on send

data button
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Figure 2: 2D visualization of the dataset.
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Figure 3: Data visualizations

You can select the type of plot from the drop-down menu at the top left (see Fig

2.3 Perform PCA and dimensionality reduction
2.3.1 Performing PCA:
e Switch to 2D view (Box 1 in Fig. {4).

e From the top right toolbar select projection (Box 2 in Fig. )

e Select the Principal Components analysis from the drop-down menu (Box 3 in Fig. )
and press the project button (Box 4 in Fig. El)

This will project the original data to all the principal components. MlDemos also provides
the percentage of explained variance for each principal component ( Box 5 in Fig. E|) and the
reconstruction error curve w.r.t. the principal components ( Box 6 in Fig. [4] )

Reconstruction Error Curve (REC): Projecting onto a subset of principal components re-
sults in an information loss which can be measured through the reconstruction error. The more
components, the smallest the reconstruction error. The reconstruction error curve (REC) il-
lustrates the rate at which the reconstruction error decreases as one includes more principal
components. This creates the curve you can see in box 6 in Fig.

Tt is advised to decompress the MLdemos zip file in the desktop folder if you are using an EPFL computer
to avoid folder /files path issues.



MLDemos

Fie Edt Plugins Help Windows
drawing Tools  Class - 1 e r—
/Er'-l H:LJ'@ b)'ﬂ o0t .Az% '.ﬁ ﬁﬂ[ﬂtf 2
Redius 7 o g
o ]
@ £ 0180 = 'Uﬂg. 30" o0 @ RL
Cther Tools @Class |
o Distribution @l E————
Project Y Auto-Fr
v o pe | 2
¥ B cun e M| v
19 2
V=] 4,
Editing Tools a ReProject | Manual Selection
pndls oo 5
- I . . o . ® ° 3 [t cammnent s -
A L
Bl 2 N
: o0 e $
...1 I H oge [ Range Range
B Generate e [ ] S ! - 759 1468 362 recanstruction error
E" o e O "%" j2: 248 192%%
Y 5144 11180 6
2 O o0 O
® "" ._"ﬁ' o 6064 4943
™ Gridsrc \ ! ind ggggﬁ%
.' @ 0: 0.29 228K
[ 10:025 19%%
5 & 11:022 1.7%%
'® 12:0.17 138%
5610038
@
o]
4 6 b 4 B 2 -
1 ET 1 3 e2 |2 3: 2] Raw Data [ Restrict to Visible Dims

samples: 178 (0:0001x:178) | x1: -5.545 x2: -7.573

Figure 4: PCA interface.

2.3.2 Performing dimensionality reduction:

So far the original datataset is projected to its principal components which are of the same
amount as the original dimensions. In order to reduce the dimensions of the data-set, you must
select which projections will be kept. In order to do that:

e Tick the range button and select the range of projections which will be kept (Box 1 in
Fig. [5)

e Press the ReProject button (Box 2 in Fig. [5).

Now only the projections which were specified by the range are kept and the others are
discarded.
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Figure 5: Dimensionality reduction.

Image Datasets

2.4 Importing and applying PCA on Image datasets
1. Select Plugins > Input/Output > PCA faces

2. From the PCA faces click the Load Dataset button (Box 1 in Fig,. @ and select the faces.png
file

This will load a set of images. The images have class labels, illustrated with a color box
around the images. You can visualize the eigenvectors of the data by selecting the Eigenvec-
tors button (Box 2 in Fig. [6]).

€ PCAFaces ? X

From Webcam Load Image From Clpboard

or drag and drop:

>>

Select a region from this image
(ciick to select all)

click: change class label

shift+click: change multiple class labe

ctrbclick: remove sample

Figure 6: The PCA faces GUL

Alongside with the visualization of the eigenvectors, you can get the reconstruction error
curve and the percentage of explained variance per projection (Fig. E[) Based on those you can



select how many eigenvectors to keep (box 3 in Fig. @ Just select the number and close the

GUL
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Figure 7: Visualization of eigenvectors as images (eigenfaces).

3 Questions

Make sure to answer in details to each of these questions.

Q1:

Q2:

Q3:

Q4:

Q5:

Q6:

Import the faces dataset and perform dimensionality reduction. How many and which
projections are needed to linearly separate all the classes of the dataset? Which faces
(samples) are projected at the highest values on the coordinates of the first three eigen-
vectors and which are canceled out (projected close to zero on the coordinates of the first
three eigenvectors )? Examine the illustration of the eigenvectors (eigenfaces) and explain
how they are related.

Import the Fault detection of steel plates dataset and visualize the data using individual
plots. Which dimensions among the original dimensions are the best to separate the data?
Why?

Apply PCA on the Fault detection of steel plates dataset and visualize the data using in-
dividual plots and 2D scatter plots of the first projections. Do not perform dimensionality
reduction. Which projections appear to separate best the classes? Compare the number
and quality (in terms of classes’ separability) of the best principal projections and best
original dimensions. What do you observe?

Import the Autonomous driving dataset and perform PCA. Select which components to
keep based on the explained variance per component and the reconstruction error curve.
Is the decision similar for both criteria? Why?

Select the principal components which allow to separate the classes. Help yourself with
the visualization of individual plots. Are those the same as in Q47 Why?

Compare the class separability between the projections on the first three eigenvectors and
the projections on the last three eigenvectors. What do you observe and why.



Solutions

Q1:

S1:

Import the faces dataset and perform dimensionality reduction. How many and which
projections are needed to linearly separate all the classes of the dataset? Which faces
(samples) are projected at the highest values on the coordinates of the first three eigen-
vectors and which are canceled out (projected close to zero on the coordinates of the first
three eigenvectors )? Examine the illustration of the eigenvectors (eigenfaces) and explain
how they are related.

All the classes of the dataset are linearly separable along the first two PCA projections
(Fig. [8] ). The projection onto the first eigenvector makes the fifth face distinctive (see
Dimension 1 in Fig. . We can see a similarity between the pictures of the fifth person
and the 1st eigenvector (Fig. E[), thus the 1st eigenvector and the samples of the fifth
class are correlated which has as result the samples of the fifth class to be projected at
the highest values on the coordinates of the first eigenvector. On the other hand the third
and forth persons are mapped at the middle values of this eigenvector. This means that
they have some features which are captured by the first eigenvector. Finally, the first two
faces are projected close to zero at the first eigenvector since it does not represent many
of their features. Since the eigenvectors can be interpreted as features of the images, the
first eigenvector appears to discriminate the faces based on the hair that appear at the
picture. Thus the fifth class is projected at highest values on the coordinates of the first
eigenvector. While the second class of images cancels out since it lacks more this feature
compared to the other classes.

We can follow the same reasoning for the second and third eigenvectors. The second
appears to be a superposition (combination of multiple features) of two or more faces,
while the third eigenvector captures mainly the features of the forth face.
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Figure 8: A set of lines which can separate the classes as they are projected at the first two
eigenvectors.
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Figure 9: Visualization of eigenvectors as images (eigenfaces).
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Figure 11: The faces dataset.

Import the Fault detection of steel plates dataset and visualize the data using individual
plots. Which original dimensions are the best to separate the classes? Why?

The objective of this question is to learn how to interpret the distribution of variance
as displayed through the box plots for each class and for each dimension in mldemos,
as illustrated in Fig. Each box-plot represents the distribution of one class on a
dimension. The range of the box corresponds to the range where 50% of the classes’
samples are distributed. The inner line of the box is the mean of the samples. The two
outer lines point at the range where 99% of the class is distributed. Therefore, the best

10



dimensions to separate a class are those where the class distribution is more distinctive
compared to other classes. When we look at the distribution of the original dimensions,
we can observed that a few classes become more separable along some dimensions. For
the metal-steel dataset, according to Figl[I2 red and green classes are more separable
along the first dimension. The distribution of the green class is very distinct along several
dimensions, e.g. along dimensions 5, 6, 8, 18s. The blue class’s distribution is distinctive
in the 22nd dimension. The other two classes seem to significantly overlap at in all
dimensions.

We can hence conclude that it is likely that a ML classifier could separate correctly the red,
green and blue classes by just using the original dimensions. Classification of the other
two classes us likely not feasible. Would applying PCA help? It could help in two ways.
1) It could help separate the two remaining classes by decorrelating their distributions.
2) It could reduce the dimensionality, which would speed up computation of the classifier
afterwards. However, if we reduce the dimension, we must make sure that the retained
projections do not discard projections that would have de-mixed well the 4 classes.

&
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Figure 12: Individual plots of the original fault detection dataset.
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Table 1: Structure of a confusion matrix

Predicted Class C C C
| |
Actual Class ¢
C ni1 | N2 | M. | Nie
Co no1 | N2 | M2... | Nac
C. el | N2 T Nece

This can be also verified experimentally by using a simple classifier such as k-NN!, to
classify the data, and a confusion matrix? to see which classes are mixed. (This was not
asked during the practical. We add it to the solutions to help you better interpret which
classes are mixed).

K-NN classifier!: the k-NN classifier assigns a class to a sample based on a “majority
vote” of the classes of its k nearest samples (neighbours). The parameter k is a hyper-
parameter which represents the amount of nearest neighbors to be considered. We will
see more about kNN during the lectures and practical on classification.

2.

Confusion matrix“: The confusion matrix is a ¢ X ¢ matrix where ¢ is the number of
classes. It illustrates which classes are mixed with which by a classification algorithm.
You can see the general structure of a confusion matrix in TabldI] For example, in the
entry nip is the number of samples which actually belong to class 1 and classified in class
1 by the classifier (correct classification). The entry njo is the number of samples which
actually belong to class 1 but classified in class 2 from the classifier, which corresponds
to missclassification. Thus, if the classes are easily separable a fine-tuned classifier would
produce only correct classifications for all the classes. This would result to a diagonal
confusion matrix. More details on confusion matrix will be presented on the classification
lecture and practical.

A color-coded visualization of the confusion matrix which derives using the k-NN classifier
with &k = 15 is illustrated in Fig[l3] The density of the red color represents the amount
of samples at each entry. Each entry is represented by a tile in Fig[I3] The higher the
amount of samples at an entry, the highest the color density of the tile. The order of
classes in the confusion matrix is the same as they appear in the individual plots.

Inspecting the confusion matrix we can deduce that the second and third classes (which
correspond to the green and blue in Fig. ) are easier separable compared to the others.
The second and third rows and columns (bounding boxes in Fig. have their color-
density focused mainly on diagonal entries (ngs and ng4) which corresponds to correct
classifications. On the other hand, from the confusion matrix can be deduced that the
first class is mixed with classes 7 and 8.

12
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Figure 13: Confusion matrix that derives using the k-NN classifier on the original dimensions
of the Fault Detection dataset. The black boxes highlight the two classes with the highest
separability.

Q3:

S3:

Apply PCA on the Fault detection of steel plates dataset and visualize the data using in-
dividual plots and 2D scatter plots of the first projections. Do not perform dimensionality
reduction. Which projections appear to separate better the classes? Compare the number
and quality (in terms of classes’ separability) of the best principal projections and best
original dimensions. What do you observe?

The projections 1,2 and 3 appear to be the best to separate the classes.The same classes are
separated by less principal components compared to original dimensions(examine Figs
and . For example the green class is distinctive on many of the original dimensions but
after PCA it is distinctive only on one projection. This means that there exist original
dimensions with redundant information. Also, the same classes that are separable at
the original dimensions are also separable at the projections. Thus, the separability of
the classes in the dataset has not been increased. This is to be expected since PCA
is an unsupervised method i.e. does not have any information regarding the classes of
the samples and thus there is no guarantee that the classes will be separable after the
projection to the principal components.

13



Q4:

S4.:

Figure 14: Individual plots of the projected fault detection dataset.

We can also compare the confusion matrices before and after PCA to decide on the impact
of PCA on the separability of the classes. The confusion matrices before and after PCA
are illustrated in Fig[I5] We can easily notice that they are very similar. Thus, in this
dataset, the advantage of PCA is to decrease the computational resources that are needed
to run the desired classification algorithms by removing redundant dimensions.

Import the Autonomous driving dataset and perform PCA select which components to
keep based on the explained variance per component and the reconstruction error curve.
Is the decision the same for both criteria? Why?

For both criteria the elbow method has to be used for deciding on the amount of pro-
jections to keep. For example, using the reconstruction error curve, a reasonable amount
of components to keep is the point where the curve start to become less steep (see black
circle in Fig. . Thus, in this example, choosing to keep an amount of approximately
16 eigenvectors appear to be a reasonable choice based on the curve. The decision of
how many components to keep has to be similar for both the reconstruction curve and

14
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(a) Before PCA (b) After PCA

Figure 15: Confusion matrix that derives using the k-NN classifier before (left) and after (right)
PCA

explained variance since they are equivalent (i.e. maximizing the explained variance is
identical as minimizing the reconstruction error ).

reconstruction error

eF e7 elle !

Figure 16: Reconstruction error performing PCA on the autonomous navigation dataset.

Q5: Select the principal components which provide the most separable classes using visualiza-
tion of individual plots. Are those the same as in Q47 Why?

S5: If the criterion is the visualization of the classes distributions, then the optimal number
of components is different. Using visualization tool, only the first two components appear
to provide a separation between classes (Fig. . In Q4 we needed 16 eigenvectors based
on the reconstruction error curve. This inconsistency happens because the reconstruction
error and the percentage of explained variance are unsupervised criteria and so they do not
have any information regarding the classes. Thus all the optimal number of components,
that derive from the variance and reconstruction error metrics, do not guarantee that

15



(a) All eigenvectors are  (b) 16 eigenvectors are  (c) 2 eigenvectors are
kept kept kept

Figure 18: Confusion matrix that derives using the k-NN classifier at the autonomous navigation
datastet, using the projections on all (left) the first 16 (center) and the first 2 (right) eigenvectors

Q6:

S6:

separate the classes.

dM

Figure 17: Individual plots of the projected navigation dataset.

Nevertheless, visualizations can be misleading as well since it is hard for humans to an-
ticipate distributions of data in more than 3D. As an example at this dataset, the classes
separability gets worse if the projections are drastically reduced (only the first two projec-
tions are kept) Fig. Therefore, the best practice is to use the elbow method in order
to decide on the number of projections that will be kept.

Compare the class separability between the projections on the first three eigenvectors and
the projections on the last three eigenvectors. What do you observe and why.

The classes are more separable at the first three components compared to the last three
(Fig. . This happens because the last eigenvectors have a direction where data vary
the least, the contrary holds for the first eigenvectors (given that they are sorted in order
of decreased variance). Therefore, is much more likely the classes to be more distinctive
at the direction of the largest variance compared to the direction of the lowest.
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